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Abstract. The evolution of‘ a classically chaotic Hamiltonian system is characterised by a 
computational complexity that increases exponentially with the time elapsed. Quantum 
systems do not exhibit such behaviour. It is therefore tempting to solve a classical problem 
by quantising i t  and following the motion of a small wavepacket. This paper shows that 
nothing can be gained by this subterfuge: an adequate quantum simulation requires a 
Hilbert space whose dimension increases exponentially with the planned duration of the 
simulation. 

1. Formulation of the paradox 

Classical Hamiltonian systems have two qualitatively different kinds of orbits [ 1,2]. 
The ‘regular’ orbits of integrable systems are multiply periodic in time and are con- 
strained to lie on n-dimensional tori in the 2n-dimensional phase space. On the other 
hand, the orbits of a non-integrable system explore part or all of the energy surface, 
which is (2n - 1) dimensional. Intermediate cases also exist. 

For a non-integrable system, the Hamilton equations of motion 

d q l d t  = a H / a p  d p / d t =  -dHlaq  (1) 

cannot be integrated analytically, but numerical methods are available. For the resulting 
‘chaotic’ orbits a small deviation from the initial data grows exponentially with time 
[3,4]. Even when the initial data are perfectly known, the motion is unpredictable 
for long times if we use a finite computer [ 5 ] .  The hallmark of classical chaos is a 
computational complexity (see appendix 1) that increases exponentially with the dur- 
ation of the evolution for a given demand in precision. Then, if the complexity of that 
computation is beyond our means, we cannot predict the final state, except statistically 
[ 51. Thus chaos is ineflectiueness-specifically, ineffectiveness in the compression of 
information [6]. 

Is there a similar situation in quantum dynamics? It has long been known empiri- 
cally that quantum mechanics tends to suppress the appearance of chaos [7]. Quantum 
wavepackets may remain localised even though classical orbits are strongly chaotic, 
because cantori, associated with the breakup of invariant K A M  surfaces, may effectively 
act as barriers to quantum wavepacket evolution while permitting extensive classical 
flow. A similar phenomenon appears in models where the Hamiltonian includes a 
time-dependent external force [8-111. In these models, which usually have a single 
degree of freedom, the system is prepared in a state involving one, or at most a few, 
energy levels of the unperturbed Hamiltonian. Such a quantum system is found to 
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spread to only a few more neighbouring energy levels, so that the energy remains 
localised in a narrow domain. (In the corresponding classical evolution the energy 
would increase diffusively without bounds.) As a consequence, the quantum motion 
is almost periodic and the initial state recurs [12]. The same is true for any time- 
independent Hamiltonian with a discrete spectrum [13]. The problem here is not the 
recurrence itself, which has the same character as a PoincarC cycle [ 141 and is completed 
after an extremely long time [ 151, but the fact that the quantum state, after an arbitrarily 
long time t ,  can be computed accurately with a limited amount of work: the solution 
of the equations of motion has null complexity [SI.  

This suggests a curious paradox [ 161. Rather than computing classically chaotic 
evolution by integrating ( l ) ,  we could quantise the classical system in the standard 
canonical way (with a fixed positive h )  and then integrate the Schrodinger equation 
in order to follow the motion of a small wavepacket. For example, we could integrate 
the evolution of the Solar System for trillions of years, assuming that the Sun, planets, 
moons and asteroids are point particles with known masses. Replacing these classical 
points by Gaussian wavepackets of optimum size, would the quantum claculation be 
a less complex task (for t + 00) than the direct integration of the Hamilton equations ( l ) ?  

Let us examine what has to be done in this quantum calculation. The standard 
procedure for integrating the time-dependent Schrodinger equation is to compute the 
eigenvalues and eigenfunctions of the Hamiltonian by solving 

H U n ( q )  = hwnun(q)  (2) 

where for simplicity it is assumed that the Hamiltonian has a discrete spectrum. With 
normalised u , ( q )  we expand the initial state as 

The time-evolved wavefunction is 

+(q, t ) = C  c n u n ( q )  exp(-iw,t). ( 5 )  

This result is essentially different from the classical one, because the computational 
complexity does not increase exponentially with time. It does have some increase 
because in order to have meaningful phases in (5) the error in w,r must be small 
modulo 2.n. Actually, from ( 5 )  alone one cannot reach conclusions about complexity. 
The sum in ( 5 )  is infinite, so that its evaluation represents an infinite amount of 
numerical work. What is done is to truncate the sums (3) and (5 ) .  By convergence, 
this involves an arbitrarily small error. We thus replace & ( q )  by 

+,6(q)=C’ c n u n ( q )  (6) 

(c/‘(q, t )  = C’ c n u , ( q )  exp(-iw,t). 

where 2’ denotes the summation of a finite number of terms. Likewise we define 

(7)  
If + X q )  is close to & ( q ) ,  then (c/’(q, t )  is close to $(q ,  t ) ,  by unitarity. 

We appear to have reached the following conclusion: if we ask what are the initial 
conditions for a classical orbit so that, after a time 1, it will land with 99% probability 
in a small region of phase space, the computational complexity increases exponentially 
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with t. On the other hand, if we want to specify a quantum state such that, at a time 
t later, it will become a wavepacket localised in the same small region of phase space, 
then the computational complexity will increase at most as a polynomial in t .  

The purpose of this paper is to show that nothing can be gained by this subterfuge 
because a reliable quantum simulation requires a value of h that decreases exponentially 
with t. Specifically, in the last paragraph we tacitly implied that the quantum calculation 
would yield a localised wavepacket. That statement, which may or may not be true, 
is not what our earlier discussion established. What we in fact showed is that the 
wavefunction will be known with high accuracy with little computational effort. 
However, in a chaotic situation that wavepacket will, even in its exact form, be widely 
spread. Its form will therefore not yield the classical position and the subterfuge fails. 
What it takes to reduce wavepacket spreading is a smaller value of h (which in turn 
allows a smaller initial optimal packet). We will show that the value of h giving the 
required accuracy has exponential shrinking. It then follows that the effective 
dimensionality of the Hilbert space-the number of terms that must be summed in 
(7)-increases exponentially with t.  Moreover, its increase is related to the same 
Lyapunov exponent that appears in the classical case. 

2. Semiclassical evolution of wavepackets 

Consider the evolution of a cluster of points which fill, at time t = 0, a small volume 
in the classical phase space, as shown in figure 1. In that figure, each component P k  

and q k  has been rescaled by a factor 

ak = (Apk /Aqk)”2  (8)  
where Apk and Aqk arise from the finite resolving power of the instruments that prepare 
the initial sate. In this way, the small initial domain has pairs of principal axes of 
equal lengths 

(9) rk -hpk/ak = U k A q k  = (bPkhqk)”*. 

In the following application, we shall be interested in a domain which is a Gaussian 
wavepacket with all rk equal, so that the initial domain is a small sphere. 

Figure 1. A small spherical ball in phase space evolves into an ellipsoid whose longest 
axis grows exponentially with time. 
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As time passes the sphere becomes an ellipsoid that rotates and vibrates erratically, 
while its centre moves along the classical trajectory that starts at the centre of the 
initial sphere [4]. The volume of this ellipsoid is constant, by Liouville's theorem. 
Asymptotically, for large t ,  its longest axis grows exponentially: 

R - e"r (10) 

where A is the Lyapunov exponent of the cluster of orbits. This exponential growth 
proceeds as long as the sphere of radius R remains small enough so that non-linear 
effects within its volume can be ignored. Ultimately, the sphere will span an appreciable 
domain of phase space, the ellipsoid will be distorted in a bizarre way, growing 
protuberances known as 'whorls and tendrils', which may be close to any point of the 
energy surface. In  this paper, we consider only the case where the initial radius r is 
so small that these non-linear effects can be ignored within the ball of radius R. 

The practical problem of long-range forecasting is to determine whether the end- 
point of the evolution will lie within a given ball of radius R. Conversely, one could 
specify the location and size of the target area and calculate the location and size of 
the launch area. The radius of the latter is then r - R e-A', by virtue of (10). 

The same problem can be formulated in quantum mechanics, the initial and final 
states being Gaussian wavepackets. The latter have Wigner distributions [ 17, 181 

r 

( p ,  q, etc, are n vectors) which are nowhere negative, so that a semiclassical interpreta- 
tion presents no difficulty. Moreover, it can be shown [ 191 that the Wigner distributions 
evolve as classical Liouville distributions so long as it is legitimate to ignore non-linear 
effects within the size of the wavepackets. 

Since a Gaussian wavepacket has minimal uncertainty, we have 

r2 - ApAq - h (12) 

h -exp(-2At)R2. (13) 

whence 

In appendix 2 we provide a more explicit derivation of this result. 
We next show that the smaller h, the larger the number of energy levels appreciably 

involved in the wavepacket. By 'appreciably involved' we mean that a truncation of 
the sort contemplated in (6) would lead to small errors. The number N of these energy 
levels can be written as 

N = p ( E ) A E  (14) 

where p ( E )  is the density of states and AE the energy spread of our packet. Let v ( E )  
be the number of states of energy equal to or less than E so that p ( E )  = dv/dE. In 
the semiclassical limit 

f 
v ( E )  = (27rh)-" J d"p d"q 

n, 

where CLE is the volume enclosed by the surface H ( p ,  q )  = E. We can therefore write 

p ( E )  = A ' h - " p , ( E )  (15) 
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where A ' = ( 2 7 r - "  and p J E )  is the classical density of states, namely 
( d / d E )  l,,, d"p d"q. We next calculate AE, the energy spread of the wavepacket (or 
of the corresponding classical Liouville distribution). I f  the energy of the classical 
motion we wish to simulate is large, we can use the classical relation 

To find the energy spread, we orient Ap and A q  along directions that maximise AE.  
Since lApl- a& and IAqI -&/a,  we get 

h E  - d % [ ( F / a ) ' + ( ~ a ) ~ ] '  ' (17) 

where indices have been omitted for brevity. The right-hand side of (17) does not, in 
general, vanish. 

Combining these results, we find that the number of energy levels behaves as 

(18) 

(19) 

N-Afi '1-2") /2  

where A is a purely classical quantity, independent of h, so that 

N - B exp[(2n - l ) h t ]  

where B is independent of t. This is the minimum dimension of the Hilbert space 
needed for a reliable quantum mechanical simulation of the classical motion, over a 
time t, when the final precision is specified. For smaller N, or longer times, the 
classical-quantum analogy does not achieve the required accuracy. 

We close with a comment on the limitations inherent in our demonstration. We 
have shown that a particular implementation of a subterfuge for bypassing classical 
complexity does not work. There are two caveats in any such demonstration. First, 
you can never be sure some clever new idea will not bypass your implicit assumptions 
and manage to accomplish what you said was impossible. Second, we do not claim 
that we have presented the best estimates even within the context we have defined. 
For example, by adjusting the time intervals in the Runge-Kutta algorithm one can 
improve the coefficient given in appendix 1, but not change the fact of exponential 
growth. Similarly if, for our initial quantum states, we took ellipsoids narrow along 
the most explosive directions (as a referee suggested) we might gain a factor of 2 in 
T. Notwithstanding these possible improvements, we believe we have provided 
evidence that the apparent computational ease within the quantum framework does 
not help one escape the essential complexity of the problem. 
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Appendix 1 

One would like to have an objective measure for the amount of computation needed 
to accomplish a given task [20,21]. This is the quantity we call 'computational 
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complexity.’ It is essentially equivalent to the notion of ‘logical depth,’ as defined by 
Bennett [21], which is, roughly speaking, the number of elementary logical steps 
required to compute a message from its minimal algorithmic description. Unfortu- 
nately, neither algorithmic information nor logical depth are effectively computable 
properties. This limitation follows from the unsolvability of the halting problem 
[22,23]. Moreover, the length of computation can decrease if the minimal program 
that generates it is replaced by a longer, but more efficient, one. Nevertheless, if we 
postulate a rate of exchange between run time and program size, the resulting logical 
depth-or computational complexity-can be shown to be reasonably machine 
independent. 

There are other definitions of complexity. In particular, within the context of 
classical mechanics, Brudno [24, 251 has shown a relation between complexity and 
metric entropy which, together with the work of Pesin [26,27] relating entropy to 
Lyapunov exponents, connects complexity to the Lyapunov exponents. 

We next substantiate the claim made following ( l ) ,  namely that for integrating 
chaotic classical equations of motion the computational effort increases exponentially 
in time. Consider, for example, a Runge-Kutta integration [28] of the equations of 
motion. At the end of the calculation we wish an error less than a given R. We use 
time steps of size E = T / N  and an order-k Runge-Kutta algorithm. What we wish to 
determine is the smallness of E, or the growth of N, to ensure the required accuracy 
at time T. 

The error after the first step is C E ~  for some c of order unity. After the second step 
the error will be be eFAcEk + C E ~ ,  where A is the Lyapunov exponent and ‘c’ refers to 
a generic order unity quantity. Calling E,  the error after n steps we have E,+1 = 
eBAE, + C E ~ .  With Eo = 0, the solution to this recursion is EN = cEk(eAT - l ) (eAc - I ) - ’ .  
Requiring EN < R implies E < exp[-AT/(k - 1)I-l. Thus 

N - exp[ A T /  ( k  - 1 )]. 

Allowing for independent errors (‘c’) of varying sign leads to N - exp[AT/( k -+)I, 

Appendix 2 

We provide a direct quantum calculation for the evolution of a wavepacket in the 
semiclassical approximation so as to estimate the smallness of h required to guarantee 
accurate positional information. This calculation shows the features anticipated by 
our more general cansiderations. Let the initial wavefunction be given by 

(A2.1) 

For convenience we rewrite this in matrix notation: 

ccl0(x) = c e x p [ - x T K x + ( i / h ) p ~ ( x - x o ) ]  (A2.2) 
where x, etc, are n vectors ( n  = 3 N ) ,  T denotes transpose and K is the matrix describing 
the time-zero spread. At a later time t the wavefunction is given by 

$(x, t )  = 1 dy a x ,  1 ;  Y ) $ o ( Y )  (-42.3) 

with G the propagator. In the semiclassical approximation [29] 

G(x, 1; Y )  = exp[(i/fi)S(x, t ;  Y ) l  (A2.4) 
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where S ( x ,  t ;  y )  is the classical action for the classical path from y at time zero to x 
at time t. Notice that (A2.4) has been stripped of complications. We ignore the 
van Vleck determinant, ie. the prefactor given roughly by [det d 2 S / d ~ d y ] ” 2 .  This is 
because we are only going to look at the way in which the dominant Gaussian 
dependence evolves (in effect, the development of the matrix K ) .  It is also implicit 
in formula (A2.4) that there is one and only one path connecting the endpoints. In 
general this is not the case. However, we use G to evolve a specific &,, so that classical 
paths that contribute to G are unimportant unless they also have initial momenta close 
to the given po. (See the exercise in ch 3 of [29].) 

To use (A2.4) we expand S about its endpoints; expansion about y is justified by 
keeping A, small, that about x by the smallness of h. First perform the y expansion 
and define 

(A2.5) 

Classically p is the momentum of the path starting at xo and arriving at x. Combine 
(A2.2)-(A2.5), define w = y - xo and drop O( w3) terms to get 

+(x, t ) =  C 1 d“w exp{-wTKw+(i/h)pEw+(i/h)[S(x, t ;  x ~ ) - P ~ w + & ~ A w ] } .  

(A2.6) 
The phase factor involving S ( x ,  t ;  xo) does not interest us here and we absorb it into 
C. The integrand in (A2.6) is a Gaussian and we use the general (matrix) formula 

d “ w  exp( -wTMw + p’w) = - exp(ipTM-’p)  
(d;;)‘’* 

with 
M = K - (i /2h)A p = ( l / h ) ( p o - p )  

to yield 
T 1 

K - ( i / 2 h ) A  

(A2.7) 

(A2.8) 

(A2.9) 

By (A2.5), p is a function of x ;  the point x, where p =po is the position of a particle 
at time t that had initial conditions ( x o , p o )  at time zero. This is where IC, will be 
maximal and we now compute the spread about that point x,.  We assume the spread 
continues to be small. In the ordinary sort of quantum calculation this assumption 
need not be justified because the finiteness of A restricts the ability to minimise the 
spread at multiple times [ 3 0 ] .  However, in our calculation f i  is not physically deter- 
mined and we ask how small it must be so that spreading will be less than a certain 
preassigned quantity. The expansion is 

where uI = XI - x,, and 

(A2.10) 

(A2.11 a )  

(A2.11 b )  
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Using (A2.10) in (A2.9) gives 

(A2.12) 

Notice that for O(u' )  accuracy in (A2.12) only O ( u )  terms were retained in (A2.10). 
The properties of $ in (A2.12) are governed by the second derivatives of S. These 

are of two sorts: a's/ax a y  ( F )  and a2S/ay2 ( A ) .  It is in d2S/ax ay that the interesting 
features of the problem reside. Essentially, this quantity is the inverse of 
a(x,,,,)/a(p,,,,,,,), as one can see by comparing (A2.5) and (A2.11). The time-dependent 
change in final position with fixed change in initial momentum is a quantity that grows 
with the Lyapunov exponent. In our multidimensional context the logarithms of the 
eigenvalues of the matrix d(  xf, ,dl)/~(p,, , , ,dl)  (=  F - ' )  are exponents reflecting divergence 
or  convergence of trajectories, the largest of these being the Lyapunov exponent. On 
the other hand, the second derivatives d 2 S / d y 2  d o  not generally behave in any dramatic 
way because they relate quantities at the same time. Thus d 2 S / d y 2  = -a(P,,,t,,,)/a(y,,,t,,I). 
This is of order unity, as can be seen by reversing the time direction: two paths start 
from the same point with extremely close values of momentum (O(dy e-")) and end 
a distance dy  from one another. The fact that the dynamics are chaotic imposes no 
growth on the difference in their final momenta. For example, in one dimension one 
gets divergent paths from the inverted simple harmonic oscillator, i.e. the equation 
x - R2x = 0 with solution 

x(s) =y[sinhSl(t-s)/sinhSlt]+x[sinhSls/sinh S l t ] .  

The classical action is 

S(x,  t ;  y )  = (mR/2  sinh S l t ) [ (x2+yz)  cosh Slt -2xyl.  

In  this case a's/& ay( =-mR/sinh Sl t  - e-*') has the expected exponential shrinking. 
The other second derivative a2S/ay2( =mSl/tanh R t  - m a ) ,  however, tends to a con- 
stant. 

The essential features of (A2.12) are therefore governed by F and we simplify our 
calculation by taking A to be diagonal and  of order unity. We also take all eigenvalues 
of A and  K to be equal. Thus 

(A2.13) K - ( i / 2 h ) A  = diag[(l/4A2) - ( i /2h)a] .  

Inserting this in (A2.12) we find 

(Fu)'(Fu)+i(real) 
- 1  ( h2/A2+4a2A2 

$(x, t )  = C exp (A2.14) 

Notice that the phase of $ has been ignored since we are aiming to estimate the spread 
in its norm. Our attention is therefore focused on the quadratic form 

( FU)T( F u ) .  
1 

'= h2/A2+4a2A2 

If F is diagonalised and Q written 

0 = (1/4A:( t ) ) ; ;  

(A2.15) 

(A2.16) 

it is clear that the spread of the wavefunction will be determined by the largest 
eigenvalue of F - ' .  As discussed above, F-'  is axlap with x the final position and p 
the initial momentum. The largest eigenvalue of this matrix therefore has its growth 
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determined by the Lyapunov exponent. Denoting this largest eigenvalue byfi we have 
fr - f o  e“. It follows that 

A i a x ( t )  = f :  exp(2ht)[h2/A2+4a2A2)].  (A2.17) 

The last step is the determination of A, the initial spread. There is the usual trade-off 
of momentum and position uncertainty; in our formal development this takes the form 
of requiring minimisation of the function 

g(A’) = h2/A’+4a’A2. (A2.18) 
The minimum is achieved with A = (h /2a )” ’  and we have finally 

A i a X ( f )  = (4af:)h exp(2ht). (A2.19) 

Recall that our goal is to set h sufficiently small so that at the end of the evolution 
the maximum spread is less than some preassigned number R. From (A2.19) this is 
seen to imply 

(A2.20) h - (R/4af;) exp( -2At) 

in agreement with (13). 
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